PURPOSE

To provide guidelines for the administration of IVIG via volumetric infusion

SITE APPLICABILITY

BC Children’s Hospital and BC Women’s Hospital and Health Centre

⚠️ This procedure is not applicable in NICU

EQUIPMENT

- Patient chart with blood product order and consent for blood transfusion
- Patient identification band
- Personal Protective Equipment (PPE): gloves, goggles, +/- gown, mask
- Chlorhexidine/alcohol swabs
- 0.9% Normal Saline or D5W bag of appropriate volume
- Infusion pump “brain”
- Y connector (if used)

<table>
<thead>
<tr>
<th>BCCH</th>
<th>BCWH</th>
</tr>
</thead>
</table>
| 1 Low Sorbing Infusion Set for the IVIG:
 - preferred set because this set has no ports
 - use in “vented” mode for IVIG administration | 1 Primary Infusion Set for the IVIG:
 - WH does not have Low Sorbing Infusion Sets
 - use in “vented” mode for IVIG administration |
| 1 Primary Infusion set for the rescue line
 - use in “unvented” mode for rescue line | 1 Primary Infusion set for the rescue line
 - use in “unvented” mode for rescue line |

The administration set is changed after the ENTIRE volume has been infused or after 12 hours, whichever comes first.

From Transfusion Medicine Laboratory

- IVIG
- Product tag
- Transfusion record

PRE-TRANSFUSION

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| 1. ENSURE order for IVIG exists.
 - Preprinted order forms are available for IVIG. | Blood products shall be prescribed by a health care provider with blood prescribing privileges. |
| 2. ENSURE that informed consent for IVIG transfusion is complete.
 Informed consent need not be obtained:
 - When urgent treatment is necessary to preserve a patient’s life and continuing health
 - When it is not reasonably possible to obtain consent
 - When there is no substitute decision maker | Informed Consent is required by law for the transfusion of all blood products. |
| 3. DETERMINE if a Group & Screen / Cross match is required.
 ABO group required prior to administration of first dose of IVIG only.
 Ensure that Transfusion Medicine Laboratory (TML) has a current ABO group if required. | Non group O patients receiving an IVIG dose of 1 g/kg or more are at increased risk of hemolysis.
To identify patients who are at increased risk of hemolysis.
To avoid unnecessary delay in transfusion. |
| 4. ENSURE that the patient is aware of the planned transfusion.
 Explain reason for transfusion and transfusion procedure to patient.
 Provide patient /caregiver with information pamphlet. | Allows the patient to prepare for the procedure.
To ensure that the patient understands the reason for transfusion and the transfusion procedure. |
ADMINISTRATION OF IVIG VIA VOLUMETRIC METHOD

PRE-TRANSFUSION

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Review transfusion history with patient/caregiver; ask if the patient has ever experienced an adverse reaction to IVIG. If the patient has experienced previous adverse reactions, inform physician and consider slower maximum infusion rate and medication pre, intra and post IVIG infusion.</td>
<td>To minimize or avoid adverse reaction to current IVIG infusion.</td>
</tr>
<tr>
<td>6. Calculate total volume required. 1 Gram = 10 mL Calculate volume that can be infused in a 4 h period. Refer to IVIG rates tables. The volume in each bottle should not exceed the total volume that can be infused in 4 hours. Some patients do not tolerate IVIG at the maximum infusion rate, e.g. patients: receiving IVIG for the first time receiving high-dose IVIG i.e. >1g/kg with auto-immune disorders e.g. Kawasaki’s who have reacted to IVIG previously</td>
<td></td>
</tr>
<tr>
<td>7. ENSURE that TML is aware of the planned transfusion. Complete/Send the Blood Component/ Derivative/Factor Concentrate Request form to TML. Maximum volume for each bottle should not exceed the volume that can be infused in 4 hours. TML will issue total volume, up to 50g, at the time of request.</td>
<td>To avoid unnecessary delay in transfusion. TML will select appropriate sized bottles.</td>
</tr>
<tr>
<td>8. ENSURE that a patient identification (ID) band in place. No identification band, No Transfusion</td>
<td>A missing ID band is a significant factor in patient misidentification and wrong product to patient incidents. Transfusion should not be administered to patients who lack identification.</td>
</tr>
<tr>
<td>9. ENSURE peripheral vascular access or central vascular access line of sufficient gauge is established for the transfusion based on clinical status of patient and urgency of transfusion. Gauge or lumen size should be large enough to allow the flow of the IVIG product within the specified administration time.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Intravenous Access for Administration of Blood Products (Volumetric)

<table>
<thead>
<tr>
<th>Peripheral Intravenous Access</th>
<th>Patient Group</th>
<th>Patient Group</th>
<th>Patient Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>20-22 Gauge</td>
<td>For routine flow rate</td>
<td>For fast flow rates</td>
</tr>
<tr>
<td>Pediatric</td>
<td>22 & 24 Gauge</td>
<td>Suitable for blood product transfusion</td>
<td></td>
</tr>
<tr>
<td>Neonatal</td>
<td>≥ 26 Gauge</td>
<td>Suitable for blood product transfusion</td>
<td></td>
</tr>
</tbody>
</table>

Central Venous Access Devices

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Lumen Size</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>Suitable for blood product transfusion</td>
</tr>
</tbody>
</table>
ADMINISTRATION OF IVIG VIA VOLUMETRIC METHOD

PRE-TRANSFUSION

Rationale

Cuffed & Uncuffed Peripherally Inserted Central Catheter (PICC)

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Lumen Size</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>3 French or greater</td>
<td>Suitable for blood product transfusion.</td>
</tr>
<tr>
<td></td>
<td>2 French or smaller</td>
<td>DO NOT use for blood product transfusion.</td>
</tr>
</tbody>
</table>

Uncuffed Double Lumen 4 French PICC

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Lumen Size</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>20 Gauge (= 3 French)</td>
<td>Suitable for blood product transfusion.</td>
</tr>
<tr>
<td></td>
<td>23 Gauge (= 2 French)</td>
<td>DO NOT use for blood product transfusion.</td>
</tr>
</tbody>
</table>

10. **ENSURE** a dedicated line for the administration of IVIG. IVIG is compatible with 0.9% Normal Saline and D5W.

11. **PERFORM** a pre transfusion patient assessment within 30 minutes of commencing the transfusion and **PRIOR** to spiking the IVIG bottle.

Measure baseline vital signs:
- Heart rate
- Temperature
- Blood pressure
- Respiratory rate

Include chest auscultation; O₂ saturation level and a review of fluid balance for patients who are considered high risk e.g. patients with coexisting medical conditions such as renal failure or cardiovascular disease.

Identify any clinical manifestations that may be cause for delaying the transfusion e.g. fever.

Identify any preexisting clinical manifestations that may be confused with a transfusion reaction e.g. fever or pre-existing rash.

Identify any existing clinical manifestations that may predispose the patient to a transfusion reaction e.g. Transfusion Associated Circulatory Overload

12. **ADMINISTER** pre medications as ordered.

Pre medications should be administered at a suitable time before infusion begins to allow for effectiveness.

13. **DOCUMENT** findings of pre transfusion assessment including any pre-medication related to transfusion preparation, e.g. antihistamines.

Establish baseline levels so that any transfusion-related deviations in patient’s clinical condition will be recognized.

14. Arrange for the **TRANSPORT** of IVIG.

Complete the Blood Release Request Form.

TML will issue total volume, up to 50g, at the time of request.

Avoid delays in initiating the transfusion.

Ensure that the person transporting the IVIG product obtains the right IVIG product for the right patient.

15. **ASSEMBLE** required equipment, see table two.

Table 2:

<table>
<thead>
<tr>
<th>BCCH</th>
<th>BCWH</th>
</tr>
</thead>
</table>
| 1 Low Sorbing Infusion Set for the IVIG:
 • preferred set because this set has no ports
 • use in “vented” mode for IVIG administration | 1 Primary Infusion Set for the IVIG:
 • WH does not have Low Sorbing Infusion Sets
 • use in “vented” mode for IVIG administration |
| 1 Primary Infusion set for the rescue line
 • use in “unvented” mode for rescue line | 1 Primary Infusion set for the rescue line
 • use in “unvented” mode for rescue line |

IVIG does not require an inline filter.

The administration set is changed after the **ENTIRE** volume has been infused or after 12 hours, whichever comes first.

16. **Prime** the vented administration set with IVIG Prime the rescue line.

Children’s Hospital method:
- The rescue line can be Y connected to the IVIG line, **OR**

Facilitates completion of task in a timely manner. IVIg is issued in a bottled and requires a vented set.

The rescue line is for emergency situations.
ADMINISTRATION OF IVIG VIA VOLUMETRIC METHOD

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A separate line which is readily available</td>
<td>The total volume infused in the first 4 hours will be lower than subsequent 4 hours because the initial slower infusion rates. (\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Women’s Hospital method:</td>
<td>To avoid unnecessary wastage of an expensive and scarce resource. (\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>The IVIG line can be connected to the rescue line at the port distal from the patient.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>17. Connect primed line(s) to patient’s IV access</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>18. Start infusion at ordered rate or TKVO.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>19. START the transfusion with the smallest IVIG bottle.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>TML round up to the nearest bottle size available, administer the prescribed volume.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>If the transfusion is temporally delayed unopened bottles can be held in the patient care location until the transfusion can start.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Complete each IVIG bottle within 4 hours of spiking.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Consult TML if there are concerns about completing the transfusion within the four hour time limit.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Return all unopened bottles of IVIG to TML promptly, if the transfusion is cancelled.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Never store IVIG products in unapproved fridges such as ward or medication fridges.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Improvised warming should never be used.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Avoid shaking the bottle to minimize bubbling.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>20. PERFORM the pre transfusion check</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>The pre transfusion check must be completed by two health care providers, with required competencies, one of whom shall initiate the transfusion. Check one bottle at a time and immediately prior to spiking the bottle.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Initial check:</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Visual Inspection:</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>The integrity of the IVIG product is checked for:</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• Particulate matter</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• Turbidity</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• Tampered cap</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• Abnormal colour</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>(\text{\textit{Warning}}) IVIG that appears abnormal should not be transfused without further investigation.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Contact TML @ 7388 for an explanation of abnormal appearance.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>CONFIRM that Informed Consent has been obtained and is current.</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>Compare the patient details:</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• First and last name</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• DOB</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• MRUN on</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• Front sheet of the patient chart</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• Blood product order</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
<tr>
<td>• Product Tag</td>
<td>(\text{\textit{Rationale}})</td>
</tr>
</tbody>
</table>
ADMINISTRATION OF IVIG VIA VOLUMETRIC METHOD

PRE-TRANSFUSION

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfusion record</td>
<td>To ensure that you are aware of the infusion rate and pre or post medication etc. that has been ordered for the transfusion.</td>
</tr>
<tr>
<td>Check the IVIG order for:</td>
<td>To ensure that the information on the IVIG label, product tag & transfusion record is identical.</td>
</tr>
<tr>
<td>• Specific blood product e.g. IVIG</td>
<td>To ensure that the product has not expired.</td>
</tr>
<tr>
<td>• Dose in grams</td>
<td>The majority of transfusion-associated mortality is due to patients receiving the wrong product, or product intended for another patient. The bedside check is a vital step in preventing serious transfusion error. Vigilance in checking to ensure that the right product is given to the right patient is mandatory. If this product is not the intended product for your patient another patient may be at risk i.e. another patient may be about to receive the wrong product.</td>
</tr>
<tr>
<td>• Volume in mL</td>
<td>To confirm that the pre transfusion checking procedure has been completed.</td>
</tr>
<tr>
<td>• Date of the transfusion</td>
<td>The product tag must remain attached to the product for the duration of the transfusion for traceability purposes and is completed at the end of the transfusion.</td>
</tr>
<tr>
<td>• Rate of infusion or duration of infusion</td>
<td></td>
</tr>
<tr>
<td>• Pre/post transfusion medication orders</td>
<td></td>
</tr>
</tbody>
</table>

The information on the label on IVIG bottle, the product tag & the transfusion record shall match.

Compare details on the IVIG bottle label, the product tag and transfusion record.

Patient information:
- ✓ First & last name
- ✓ DOB
- ✓ MRUN

Product information:
- ✓ Brand & concentration of IVIG
- ✓ Lot number
- ✓ Expiry date

⚠️ Check for any TML comments

Final check in the presence of the patient

1. Ask patient/caregiver, where possible, to state their, their child’s, full name and date of birth and compare to patient details on patient identification band.
2. **Compare the patient details:**
 - ✓ First and last name
 - ✓ DOB
 - ✓ MRUN
3. **With patient details on:**
 - Patient identification band/card
 - Product Tag
 - Transfusion record

If you find any discrepancies DO NOT proceed.

Contact TML @ 7388 immediately.

21. **DOCUMENT** the checking procedure by signing the transfusion record.

Record:
- Signature of both staff members who carried out the pre transfusion check
- Date of transfusion
- Start time

⚠️ **Do not** complete the product tag at this time.
22. Immediately after the verification checks have been completed INITIATE the transfusion.
 ⚠️ Avoid shaking the bottle.
 • Clamp the line.
 • Flip off plastic cap on top of the bottle and expose rubber stopper.
 • Clean the exposed rubber stopper for 30 seconds and leave to dry for 1 minute.
 • Place bottle on a flat surface.
 • Insert the spike into the area delineated by the raised ring in the center of rubber stopper at a 90° angle, see figure 1.
 • Invert bottle immediately, gently squeeze and release drip chamber to fill to 2/3 before you open the vent to establish flow, see figure 2.
 • Program the pump to deliver the required volume at the appropriate rate, see table 3. Confirm the programmed rate and volume to be infused.
 ⚠️ Ensure vent is closed any time you spike a new bottle. If the vent is open, fluid could wet the vent, resulting in slow or blocked flow and possible air bubble formation in the tubing.
 ⚠️ Do not tamper with the vent or use needle as an air inlet.
 ⚠️ Discontinue the infusion and inform TML if there is any leaking from around the spike site. These measures will help minimize bubble formation.
 To prevent contamination of the product.
 To prevent the IVIG product backing up the standby line.

 ![Figure 1](image1.png)
 ![Figure 2](image2.png)

Prevent errors in the rate of infusion

Table 3: IVIG Infusion Rate Table for all patients

<table>
<thead>
<tr>
<th>Start Rate 1st 30 min</th>
<th>2nd 30 min</th>
<th>3rd 30 min</th>
<th>If initial infusion rate is well tolerated, increase the rate of the infusion at 30 min intervals.</th>
<th>Maximum Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mL/kg/h</td>
<td>1 mL/kg/h</td>
<td>2 mL/kg/h</td>
<td></td>
<td>4 mL/kg/h, or 200 mL/h, whichever comes first</td>
</tr>
</tbody>
</table>

⚠️ For patients with renal dysfunction or at risk of renal dysfunction infuse at lowest rate possible and maximum rate should not exceed 2 mL/kg/h.

⚠️ Slower infusion rates may reduce rate related transient side effects/transfusion reactions.

⚠️ Assess patient prior to each rate increase and after introducing new lot numbers.

When introducing new lot numbers, it is not necessary to reduce the infusion rate.

23. **MONITORING** see table 4 below.

 Instruct the patient/caregiver to inform a HCP immediately if they/their child experience:

 - Hives/ itching
 - Nausea/vomiting
 - Muscle aches
 - Headache
 - Flushing
 - Fever

Patients will be aware of the:

- S&S of a transfusion reaction
- Actions to take should they experience a transfusion reaction

Table 4: Patient Monitoring During IVlg Transfusion for all patients.

Remain with, or be in a position to closely observe, the patient for the **first 15 minutes** following the start of the infusion (when product actually reaches the patient) and observe for signs and symptoms of a transfusion reaction.
Measure Vital signs:

<table>
<thead>
<tr>
<th>Vital signs include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Heart rate</td>
</tr>
<tr>
<td>• Temperature</td>
</tr>
<tr>
<td>• Blood Pressure</td>
</tr>
<tr>
<td>• Respiration rate</td>
</tr>
</tbody>
</table>

Increase observation for high risk patients e.g. neonates, and unaccompanied, clinically unstable or unconscious patients.

Monitor O₂ saturation level for neonates.

- **Serious and life threatening reactions (anaphylaxis)** can occur unpredictably and progress rapidly therefore patients must be closely monitored throughout the transfusion.

24. If a second bottle is required:

- **REPEAT** steps 14 to 20
- **START** the infusion at the highest rate achieved in the previous bottle e.g. if the rate was 50 mL/h start this bottle at 50 mL/h.
- *When introducing new lot numbers, it is not necessary to reduce the infusion rate.*
- **Change** the administration set after the **ENTIRE** volume has been infused or after 12 hours, whichever comes first.

- **To ensure TML staff have sufficient time to prepare next bottle of IVIG.**
- **Decrease the risk of bacterial contamination**

25. In the event of a suspected transfusion reaction:

- **STOP the transfusion immediately**
- **Administer** IV fluids via rescue line
- **Reassess** patient vital signs
- **Reconfirm** unique identifiers on both patient and blood product
- **Seek** assistance and **notify** physician.
- **Refer** to Transfusion Reaction Procedure & Reference Guide and **complete** the Transfusion Reaction Report Form

- **To minimize patient harm.**
- **To keep the vein open.**
- **To seek direction for patient management.**
- **To ensure correct procedure is followed.**
- **To report the transfusion reaction.**

26. COMPLETION of infusion.

- **If the full bottle is ordered, FLUSH** the administration set with 0.9% Normal Saline or D5W and **disconnect** the line

 or

- **STOP** the infusion when the prescribed volume is infused and flush connection tubing.

- **TML round up to the nearest bottle size available, administer** the prescribed volume only.

- **Use** minimum volume flush for fluid restricted patients.

- **To ensure all the product is cleared from the administration set.**

27. RETURN to previously ordered intravenous solution, saline/heparin lock vascular access or discontinue IV as per prescriber’s orders.

- **DO NOT** de-access CVC or remove IV until the post transfusion vital signs are recorded.

- **IV access may be required if signs of a transfusion reaction are detected.**

28. DISCARD product bottle and administration line in biohazard container.

- **Universal precautions.**

29. PERFORM post transfusion blood work if ordered.

- **To monitor the response to the transfusion.**
ADMINISTRATION OF IVIG VIA VOLUMETRIC METHOD

30. DOCUMENT event

Complete the transfusion record:
- Volume infused
- End time
- Transfusion reaction noted: yes or no

Complete the product tag:
- Date/Time transfused
- Transfused by
- Transfusion reaction noted: yes or no

Complete patient notification tag section:
- Date of transfusion
- Record in patients chart:
 - Vital signs
 - Volume infused
 - Patient’s response to transfusion
 - All interventions related to transfusion
 - If a transfusion reaction occurred record all S&S experienced by the patient

31. FILE transfusion record in patient’s chart.

To ensure full traceability of the product.

32. GIVE the patient/caregiver the patient notification tag section of the product tag. The notification tag may be filed in the patient’s chart and given to the patient/caregiver at discharge.

All patients who receive IVIG should receive notification of the transfusion in writing.

33. RETURN the completed product tag to TML.
- For patients in the 1982 building; return the product tag via internal mail.

To ensure full traceability of the product.

34. OBSERVE in-patients for signs & symptoms of a transfusion reaction post transfusion.

Transfusion reactions can occur after the completion of the transfusion.

35. For outpatients, REVIEW post transfusion care and GIVE the “Heading Home after a Transfusion” form to the patient/family.

Patient/caregiver should be aware of the potential of transfusion reactions and post transfusion care.

DISCHARGE when clinically stable.

REFERENCES

Product monographs: Gamunex, IGIVnex, Gammagard Liquid 10%